Аминокислоты применение в медицине

Аминокислоты применение в медицине

Характеристика и значение аминокислот в медицине. Концепция использования в составе лекарственных средств биологически активных веществ, которые изначально содержатся и вырабатываются в организме человека. Лекарственные препараты, содержащие аминокислоты.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 25.10.2016
Размер файла 24,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство здравоохранения Республики Беларусь

УО "Витебский государственный ордена дружбы народов медицинский университет"

Кафедра общей и клинической биохимии с курсом ФПК и ПК

"Использование аминокислот в качестве лекарственных средств"

Исполнитель студентка 40 гр. 2 курса

Руководитель доцент Фомченко Г.Н.

  • Введение
  • Глава 1. Биохимия аминокислот
  • Глава 2. Характеристика и значение аминокислот в медицине
  • Глава 3. Аминокислоты в качестве лекарственных препаратов
  • Заключение
  • Список использованной литературы

В сегодняшнем мире учеными-фармацевтами всего мира активно разрабатывается и внедряется в жизнь концепция использования в составе лекарственных средств биологически активных веществ, которые изначально содержатся и вырабатываются в организме человека. Перспективным в этом плане является использование аминокислот, которые участвуют практически во всех биохимических процессах, проходящих в организме: в синтезе витаминов, пигментов, гормонов и пуриновых компонентов. Живые организмы растительного типа могут самостоятельно вырабатывать полезные для жизнедеятельности аминокарбоновые кислоты, когда как представителям животного мира (к которому относиться и Хомо Сапиенс) приходиться дополнительно снабжать ими свой организм. Запас некоторых получается восполнить исключительно во время еды.

В Топ-10 незаменимых аминокислот, необходимых нашему организму, входят: аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, триптофан, треонин, фенилаланин.

Еще 10 аминокислот являются заменимыми (их синтезирует наш организм). К ним относятся: аланин, аспарагин, аспартат, глицин, глутамат, глутамин, пролин, серин, тирозин и цистеин.

Лекарственные препараты, содержащие аминокислоты, а также новые соединения, полученные на основе этих метаболитов, составят весомую долю в арсенале высокоэффективных профилактических средств, лечебных средств.

У человека не образуется аминогруппа (NH2), поэтому для поддержания азотистого равновесия, а также для осуществления биосинтеза белковых соединений, в состав которых входят аминогруппы, в организм обязательно должны поступать и усваиваться в нем определенные количества незаменимых и заменимых аминокислот.

Однако не все аминокислоты, поступающие с пищей, являются доступными. В отдельных случаях под влиянием жесткой (термической) или необычной кулинарной обработки пищевые белки приобретают особые свойства, из-за которых затрудняется их утилизация. Кроме того, при нарушениях функций желез пищеварительного аппарата, прежде всего при ослаблении ферментативной активности пищеварительных соков, которое наступает при физиологических (в поздних стадиях онтогенеза) и патологических состояниях и заболеваниях, снижается интенсивность расщепления (переваривания) белков, нарушаются процессы всасывания аминокислот. В аминокислотных препаратах, полученных методом кислотного гидролиза, доступность аминокислот также снижена из-за того, что D-формы их организмом не усваиваются. Не исключено, что D-формы аминокислот образуются при обработке мясных продуктов в кислой среде, а также у больных с гиперацидным состоянием. Следовательно, при нарушениях процессов переваривания белковых продуктов и ослаблении всасывания аминокислот, а также при образовании рацематов и D-форм аминокислот создаются условия снижения доступности этих метаболитов, что порождает их дефицит, приводит к нарушению аминокислотного дисбаланса и существенным сдвигам в азотистом обмене. Неполная утилизация поступающих с пищей аминокислот отрицательно сказывается на биосинтезе структурных белков, ферментов, гормонов, витаминов, медиаторов и других высокоактивных соединений, в молекулы которых входят аминокислоты.

Кроме того, при функциональной недостаточности печени, вызванной возрастными (старческими) изменениями или заболеваниями гепатобилиарной системы, ослабляются или извращаются процессы трансаминирования, дезаминирования аминокислот, что усугубляет нарушения азотистого обмена и способствует возникновению аминокислотного дисбаланса в организме.

Валин при низкокалорийной диете вносит 10 % вклада в продукцию энергии во время интенсивных упражнений; участвует в образовании и запасе гликогена; метаболизируется в мышечную ткань; стимулирует умственную деятельность и активность, координацию.

Изолейцин участвует в образовании гликогена и гемоглобина.

Лизин участвует в образовании антител; в процессе метаболизма вместе с витамином С образует карнитин, последний улучшает устойчивость к стрессам и жировой метаболизм; противодействует утомлению; стимулирует умственную работоспособность.

Треонин участвует в образовании коллагена и эластина; обладает гликогенным воздействием; активизирует, иммунную систему, участвуя в образовании иммуноглобулинов и антител; стимулирует процессы роста тканей; способствует энергообмену в мышечных клетках.

Триптофан вместе с биотином, витамином В, и В 6 способствует релаксации и хорошему сну (в дозировке до 250 мг), утилизации витаминов группы В; является антидепрессантом; участвует в образовании серотонина; повышает сопротивляемость стрессам.

Фенилаланин участвует в продукции коллагена и соединительных тканей; является стимулятором ЦНС; антидепрессант; участвует в синтезе тиреоидных гормонов щитовидной железы; улучшает функционирование кровеносной сети; повышает работоспособность.

Аланин регулирует уровень сахара в крови; используется как источник энергии клетками мозга; способствует накоплению гликогена печенью и мышцами; участвует в процессе создания иммуноглобулинов и антител; предшественник образования оксида азота, который расслабляет гладкие мышцы, в том числе коронарных сосудов, улучшает память и другие функции.

Аргинин способствует детоксикации и выведению аммиака; снижает уровень жира в организме; участвует в процессах образования коллагена; стимулирует иммунную систему; предотвращает физическую и умственную усталость; выступает в качестве гепатопротектора; способствует синтезу гликогена в печени и мышцах, высвобождению глюкагона, пролактина, соматотропина, адреналина.

Кислота аспарагиновая облегчает превращение углеводов в мышечную энергию; повышает активность иммунной системы; увеличивает сопротивляемость утомлению; сохраняет способность к работе на выносливость.

Кислота глутаминовая способствует метаболическим процессам в мозгу; снижает гипогликемию, увеличивая уровень сахара в крови; участвует в метаболизме других аминокислот, в биосинтезе пролина и орнитина; выполняет функции медиатора в ЦНС, улучшает белковый и углеводный обмены, а также энергетическое обеспечение функций головного мозга. Введение кислоты глутаминовой снижает накопление в крови молочной кислоты, ликвидируя посленагрузочный ацидоз и повышая выносливость. Кислота глутаминовая играет роль нейромедиатора в спинном мозге, облегчая передачу нервного возбуждения в синапсах, способствует синтезу ацетилхолина и АТФ, а также переносу ионов калия через клеточные мембраны, что усиливает процессы мышечного сокращения.

Читайте также:  Honor band 2 pro 4pda

Гистидин — незаменимая аминокислота, при введении в организм вызывает значительное увеличение секреции СТГ. Принимает активное участие в синтезе карнозина — азотистого экстрактивного вещества мышц, улучшает азотистый баланс, функцию печени, повышает желудочную секрецию и моторную активность кишечника, иммунитет и ослабляет воздействие на организм экстремальных факторов, нормализует сердечный ритм. В медицине применяют при язвенной болезни, гастритах, гепатитах, снижении иммунитета и атеросклерозе.

Метионин — незаменимая аминокислота, обладая высокоподвижной метальной группой, метионин принимает участие в синтезе холина и фосфолипидов, участвует в образовании и обмене серосодержащих аминокислот, стимулирует выброс СТГ. Способствует поддержанию азотистого равновесия организма, усиливает синтез стероидных гормонов, предохраняет от окисления адреналин, обезвреживает многие токсические продукты. Метионин несколько снижает функцию щитовидной железы, предупреждает использование белка в качестве энергетического субстрата; гепато — и нейропротектор.

При введении в организм метионин уменьшает количество нейтрального жира в печени и снижает содержание холестерола в крови. В медицине применяют при болезнях печени и поджелудочной железы, а также в случаях отравлений, при белковой недостаточности и дистрофии..

аминокислота лекарственный организм вещество

Аминокислоты широко используются в современной фармакологии. Некоторые из них выступают в качестве нейромедиаторных веществ или их предшественников:

· Глутаминовая кислота — влияет на силу процесса возбуждения в синапсах центральной нервной системы и выводит лишний аммиак. Прием препарата способствует переносу и поддержанию кальция в головном мозге в необходимой концентрации, стимулирует нормализацию окислительно-восстановительного потенциала.

Глутаминовая кислота увеличивает устойчивость организма к гипоксии, связывает процесс обмена углеводов и нуклеиновых кислот, приводит в норму содержание гликолиза в тканях и крови.

· Аспарагиновая кислота — обеспечивает правильную передачу сигнала между нейронами. способствует повышению потребления кислорода сердечной мышцей, обладает антитератогенным действием.

· Глицин — нормализует и активирует процессы защитного торможения в центральной нервной системе, уменьшает психоэмоциональное напряжение, повышает умственную работоспособность.

· Таурин — способствует активизации метаболических процессов, активно стимулирует процесс заживления тканей, проявляет противосудорожные и антикатаральные свойства, незаменимо в осуществлении липидного обмена в организме, играет важную роль в обменных процессах в организме в целом.

· Гамма-аминомасляная кислота — препараты, в состав которых включена гамма-аминомасляная кислота, относятся к ноотропным средствам, они стимулируют обмен веществ непосредственно в головном мозге, что положительным образом сказывается на его деятельности.

Другие выполняют роль эндогенного источника NO:

· Аргинин — Лекарство поддерживает нормальный уровень холестерина, устраняет колебания артериального давления, улучшает процессы микроциркуляции и реологические свойства крови, стимулирует выработку инсулина, нормализует содержание глюкозы в организме, укрепляет иммунную систему, стимулирует выработку соматропина, усиливает сперматогенез, способствует росту мышечной ткани.

· Третьи снижают катаболизм белка, усиливают его синтез:

· Тавамин — основан на комплексном воздействии входящих в его состав незаменимых разветвленных альфа-аминокислот — валина, лейцина, изолейцина, а также таурина. Валин обеспечивает обмен азота в организме и нужен для нормального мышечного метаболизма и регенерации поврежденных тканей. Лейцин, как незаменимый компонент синтеза белков и источник энергии, обеспечивает восстановление всех тканей организма, а также стимулирует синтез соматотропина (гормона роста) и незначительно снижает уровень сахара в крови. Изолейцин также участвует в синтезе белков, регенерации поврежденных тканей, выработке гемоглобина и регулировании содержания сахара в крови. Таурин, регулируя внутриклеточный обмен ионов калия, натрия и магния, оказывает антиоксидантное и регенерирующее действие, а также способствует выработке желчных кислот, которые обеспечивают переваривание жиров.

В медицине широко используются инфузионные растворы, содержащие композиции высокоочищенных аминокислот, применяются при лечении тяжелых больных в качестве детоксикантов, а также для восполнения нутриентной недостаточности.

На основе аминокислот созданы высокоэффективные препараты, которые используются как антигипертензивные средства:

· Каптоприл — снижает артериальное давление и уменьшает нагрузку на сердце. Кроме того, усиливает почечный кровоток и кровоснабжение сердца

· Эналаприл — гипотензивный препарат, относящийся к классу ингибиторов АПФ. Действие Эналаприла обусловлено его влиянием на ренин-ангиотензин-альдостероновую систему, которая играет важную роль в регуляции артериального давления.

· Лизиноприл — Ингибитор АПФ пролонгированного действия, предназначен для лечения артериальной гипертензии, и профилактики развития её осложнений. Особенностью препарата является то, что он не метаболизируется в жировой ткани, что позволяет эффективно использовать его у пациентов с избыточной массой.

· Фозиноприл — Антигипертензионное средство, ингибитор АПФ.

· Тимоген — Препарат стимулирует процессы регенерации в организме в случае их угнетения, улучшая внутриклеточные обменные процессы.

· Окситоцин — лекарственное средство, которое повышает тонус и сократительную активность миометрия. Данный медикамент применяют для стимулирования родовой деятельности. Назначают этот препарат при переношенной беременности, внутриутробной гибели плода, а также, при резус-конфликте.

· Окреотид — фармакологический препарат, который применяется при заболеваниях поджелудочной железы. Основное действующее вещество является производным соматостатина. Этот компонент препятствует образованию патологической секреции гормона роста.

· Десмопрессин — таблетки содержат синтетический аналог натурального гормона задней доли гипофиза — аргинина-вазопрессина (антидиуретический гормон). По сравнению с вазопрессином, десмопрессин обладает менее выраженным действием на гладкие мышцы сосудов и внутренних органов при более выраженной антидиуретической активности.

· Препарат активирует только У 2-рецепторы вазопрессина, расположенные в эпителии извитых канальцев и широкой части восходящих петель Генле, что вызывает расширение пор эпителиальных клеток нефрона и приводит к усилению реабсорбции воды в кровяное русло.

Высокоочищенные аминокислоты используются для создания композиций, повышающих выносливость человека при интенсивных физических нагрузках, для снижения воздействия неблагоприятных факторов внешней среды, а также при изготовлении смесей для детского питания. Также препараты аминокислот широко используются в спортивной практике в виде диетических добавок как изолированно, так и в сочетаниях друг с другом и с другими веществами. Они оказывают множественные эффекты на разные функциональные системы и органы человека, стимулируя или угнетая их деятельность. В медицинской практике используют только L-формы.

Читайте также:  Tight fem от фирмы san

Применение аминокислот в научных и лечебных целях позволит более глубоко познать тайны физиологических и патологических процессов. Имеющийся клинический опыт показывает, что определение свободных аминокислот в сыворотке крови и моче больных при ряде заболеваний (инфаркте миокарда, гипертонической болезни, заболеваниях печени, почек, легких) имеет диагностическое значение, является важным прогностическим признаком, определяющим лечебную тактику и исход заболевания.

Дальнейшее накопление и глубокий анализ данных об изменениях различных аминокислот в крови, спинномозговой жидкости, выделении их с мочой в зависимости от сезона года, суточных колебаний, возраста, особенностей питания, образа жизни, фаз патологического процесса и заболеваний позволит расширить показания для применения аминокислот в практической и экспериментальной медицине.

Безусловно, важность аминокислот сложно переоценить. Они участвуют во многих биохимических реакциях, без которых нельзя представить нормальное функционирование живой системы. А их использование в качестве лекарственных средств открывает новые возможности регуляции процессов жизнедеятельности на более сложном, более глубоком и безопасном уровне, чем препараты прошлого поколения.

Список использованной литературы

1. Биохимия. Учебное пособие для студентов высших медицинских учебных заведений. / Под ред. Н.Ю. Коневаловой. — Витебск, 2009 г.

2. Николаев А.Я. Биологическая химия, 1989.

Белки – важнейшие элементы человеческого организма, они участвуют в синтезе гормонов и ферментов, необходимы для реализации огромного числа биохимических реакций. Сложные белковые молекулы построены из аминокислот.

Лейцин – одно из важнейших соединений этой группы. Относится к незаменимым аминокислотам, которые организм не может синтезировать самостоятельно организм, а получает извне. Лейцин применяется в спортивном питании, медицине, сельском хозяйстве. В пищевой промышленности он известен как добавка E641 L-лейцин и используется для модификации вкуса и запаха продуктов.

Научные исследования аминокислоты

Впервые выделил лейцин и описал его структурную формулу химик Анри Браконно в 1820 году. В начале 20 века Герман Эмиль Фишер смог искусственно синтезировать это соединение. В 2007 году в журнале «Diabetes» были опубликованы результаты научного исследования функций и свойств лейцина. Посмотреть результаты и выводы ученых можно по ссылке (информация представлена на английском языке).

Эксперимент проводился на лабораторных мышах. Животных разделили на две группы. В первой из них грызуны получали обычную пищу, а в рационе второй присутствовал избыток жирной еды. В свою очередь каждую из групп поделили на подгруппы: в одной из них животным давали 55 мг лейцина ежедневно, а во второй мыши никаких дополнительных соединений, помимо предложенного рациона, не получали.

По результатам 15 недель оказалось, что зверьки, которых кормили жирной пищей, набрали вес. Однако те из них, кто дополнительно получали лейцин, набрали на 25% меньше, чем те, кому аминокислоту в питание не вводили.

Кроме того, анализы показали, что животные, принимавшие лейцин, расходовали большие объемы кислорода по сравнению с остальными. Это значит, что метаболические процессы у них шли быстрее, и калорий сжигалось больше. Факт показал ученым, что аминокислота замедляет процесс накопления жировой прослойки.

Лабораторные исследования мышечных волокон и адипоцитов белой жировой ткани позволили установить, что дополнительное поступление лейцина в организм стимулирует производство гена разобщающего белка, который стимулирует более интенсивное сжигание жира на клеточном уровне.

В 2009 году ученые из университета Пенсильвании повторили эксперимент своих коллег. С результатами этого исследования можно ознакомиться по ссылке (информация также представлена на английском языке). Выводы ученых полностью подтвердились. Также было установлено, что прием меньших количеств аминокислоты не оказывает эффекта на мышей.

Биологическая роль лейцина

Лейцин играет важную роль во многих процессах. Он выполняет следующие функции:

  • замедляет катаболические процессы в мышцах;
  • ускоряет синтез белковых молекул, что способствует наращиванию мышечной массы;
  • снижает уровень сахара в крови;
  • обеспечивает баланс азота и азотистых соединений, что необходимо для белкового и углеводного обмена;
  • предотвращает избыточный синтез серотонина, что способствует снижению усталости и ускорению восстановления после нагрузок.

Нормальное содержание лейцина в крови укрепляет иммунитет, способствует заживлению ран, ускоряет восстановление после травм. Организм использует его как источник энергии.

Применение в спорте

При интенсивных физических нагрузках организму требуется больше сырья для построения мышечных волокон и извлечения энергии. В спорте, особенно в силовых видах, например, бодибилдинге, пауэрлифтинге, кроссфите, прием лейцина – распространенная практика.

Он необходим, чтобы снизить интенсивность катаболизма и ускорить анаболические процессы. Как правило, аминокислоту принимают в виде спортивных добавок, содержащих комплекс BCAA. В него входят три важнейших аминокислоты – лейцин, изолейцин и валин.

В подобных БАДах принято соотношение компонентов 2:1:1 (соответственно лейцин, его изомер и валин), некоторые производители повышают содержание первого в два и даже в четыре раза.

Эта аминокислота используется спортсменами как для наращивания мышечной массы, так и для похудения. Кроме того, прием лейцина повышает энергетический потенциал, необходимый для улучшения спортивных показателей.

Применение в медицине

Препараты, содержащие лейцин, применяют и в терапевтических целях. Их назначают при тяжелых заболеваниях печени, дистрофии, полиомиелите, невритах, анемии, некоторых нарушениях психического здоровья.

Как правило, прием этого соединения дополняют лекарствами, содержащими глутаминовую кислоту и другие аминокислоты для усиления терапевтического действия.

Польза лейцина для организма заключается в следующих эффектах:

  • нормализация функции гепатоцитов;
  • укрепление иммунитета;
  • снижение риска ожирения;
  • поддержка правильного развития мышц;
  • ускорение восстановления после физических нагрузок, повышение работоспособности;
  • благотворное влияние на состояние кожи.
Читайте также:  Анаболики актеры и роли

Аминокислота применяется для восстановления пациентов, страдающих дистрофией, ее назначают после длительного голодания. Также она используется в терапии онкологических больных и пациентов с циррозом печени. Применяют для ускорения восстановления после травм, оперативных вмешательств, а также в антивозрастных программах.

Суточная потребность

Потребность взрослого человека составляет 4-6 г лейцина в сутки. Спортсменам требуется несколько больше этого соединения.

  1. Если цель – нарастить мышечную массу, то рекомендуется принимать 5-10 г в процессе тренировки и после нее. Такой режим поддерживает достаточный уровень лейцина в крови во время интенсивной нагрузки, что обеспечивает стабильное образование мышечных волокон.
  2. Если цель спортсмена – похудение, сушка, то употреблять добавки, содержащие лейцин, нужно 2-4 раза в день, в количестве около 15 г. Добавку принимают во время и после тренировки, а также еще 1-2 раза в день между приемами пищи. Такая схема стимулирует метаболизм и способствует жиросжиганию. При этом мышечная масса сохраняется, а катаболические процессы подавляются.

Превышение нормы может привести к избытку лейцина в организме и нанести вред здоровью. Перед применением лекарств или пищевых добавок, содержащих эту аминокислоту, желательно проконсультироваться с врачом. Спортсмены могут положиться на опытного профессионального тренера: он подберет подходящие дозы.

Последствия дефицита и избытка в организме лейцина

Лейцин – незаменимая аминокислота: поэтому крайне важно получать извне достаточное количество этого соединения. Её нехватка в организме приводит к отрицательному балансу азота и нарушает течение метаболических процессов.

Дефицит лейцина вызывает задержку роста у детей вследствие недостаточной продукции гормона роста. Также недостаток этой аминокислоты провоцирует развитие гипогликемии. Начинаются патологические изменения в почках, щитовидной железе.

Избыток лейцина тоже может привести к различным проблемам. Чрезмерное поступление этой аминокислоты способствует развитию следующих патологических состояний:

  • неврологические нарушения;
  • субдепрессивные состояния;
  • головные боли;
  • гипогликемия;
  • развитие негативных иммунологических реакций;
  • атрофия мышечных тканей.

Пищевые источники лейцина

Организм получает эту аминокислоту только из пищи или специальных добавок и лекарств – важно обеспечивать достаточное поступление этого соединения.

Одна из добавок с лейцином

Для этого рекомендуется употреблять следующие продукты:

  • орехи;
  • сою;
  • горох, бобовые, арахис;
  • сыры (чеддер, пармезан, швейцарский, пошехонский);
  • молочную продукцию и цельное молоко;
  • индейку;
  • красную икру;
  • рыбу (сельдь, горбушу, морского окуня, скумбрию, судак, щуку, треску, минтай);
  • говядину и говяжью печень;
  • курицу;
  • баранину;
  • куриные яйца;
  • крупы (пшено, кукурузная, коричневый рис);
  • кунжут;
  • кальмары;
  • яичный порошок.

Лейцин содержится в концентратах и изолятах протеинов, употребляемых спортсменами.

Противопоказания

Противопоказанием к приему лейцина выступают отдельные редкие наследственные аномалии.

  • Лейциноз (болезнь Менкеса) – врожденное нарушение обмена гидрофобных аминокислот (лейцина, изолейцина и валина). Эта патология выявляется уже в первые дни жизни. Заболевание требует назначения особой диеты, из которой исключается белковая пища. Она заменяется протеиновыми гидролизатами, в которых отсутствует комплекс аминокислот БЦАА. Характерный признак лейциноза – специфический запах мочи, напоминающий аромат жженого сахара или кленового сиропа.

  • Сходную с синдромом Менкеса клиническую картину дает и еще одно генетически обусловленное заболевание – изовалератацидемия. Это изолированное нарушение обмена лейцина, при котором поступление этой аминокислоты в организм также должно быть исключено.

Без лейцина невозможны многие биохимические реакции в организме. Из пищевых продуктов его можно получить в нужном количестве только при сбалансированном рационе, однако при интенсивных физических нагрузках расход аминокислоты существенно возрастает.

Прием лейцина необходим спортсменам, стремящимся ускорить наращивание мышечной массы, снизив скорость катаболических процессов. Прием аминокислоты поможет похудеть, сохраняя при этом неизменным объем мышц.

Метионин , незаменимая кислота, содержит мобильную метильную группу, которая может передаваться на другие соединения. Благодаря этому она участвует в синтезе холина, фосфолипидов, обмене витаминов В12 и фолиевой кислоты. В реакциях биосинтеза белка метионин является инициирующей аминокислотой. Он участвует в процессах обезвреживания токсинов в печени.

Метионин ("Ациметион") и его активные производные (как вещество "адеметионин" в составе препарата "Гептрал") используют для профилактики и лечения различных заболеваний печени как липотропный фактор, препятствующий накоплению жира , при токсических поражениях печени, при атеросклерозе и в качестве антидепрессанта для улучшения синтеза нейромедиаторов.

Глутаминовая кислота – это предшественник гамма-аминомасляной кислоты (ГАМК), являющейся тормозным медиатором нервной системы. Сама по себе глутаминовая кислота также является нейромедиатором, стимулирующим передачу возбуждения в синапсах ЦНС. Кроме этого, глутамат участвует в обезвреживании аммиака, синтезе пуриновых и пиримидиновых оснований, играет ведущую роль в обмене остальных аминокислот, что активно используется в спортивной медицине. Потребность организма в глутаминовой кислоте в несколько раз выше потребности в других аминокислотах.

Глицин является медиатором ЦНС тормозного действия. Улучшает метаболизм в тканях мозга. Оказывает успокаивающее действие. Нормализует сон, уменьшает повышенную раздражительность, депрессивные состояния.

Цистеин участвует в метаболизме хрусталика глаза. Зачастую нарушения хрусталика связаны с недостатком цистеина, поэтому цистеин применяют на начальных стадиях катаракты.

Комплексный препарат глутаминовой кислоты, цистеина и глицина "Вицеин" используют в виде глазных капель.

Гистидин – условно незаменимая аминокислота. Используется при лечении гепатитов, язв желудка и двенадцатиперстной кишки. В организме гистидин превращается в медиатор гистамин.

Церебролизин – гидролизат вещества мозга свиньи, содержащий низкомолекулярные пептиды (15%) и аминокислоты (85%). Используется при нарушениях функций ЦНС, мозговых травмах, кровоизлияниях, вегетативных дистониях и т.п.

Препараты для парентерального питания: полиамин (набор 13 аминокислот), вамин (набор 18 аминокислот), ваминолакт (набор 18 аминокислот, соответствующих составу грудного молока), гидролизин (гидролизат белков крови крупного рогатого скота), аминотроф (гидролизат казеина), фибриносол (гидролизат фибрина крови).

Ссылка на основную публикацию
Азы бильярда видео
Перед тем, как перейти к основе стоит разъяснить вам, что очень сложно научить человека играть в бильярд с помощью видеоуроков,...
Th2 тип иммунного ответа
Я попыталась собрать доступную информацию по иммунологии, которая может помочь понять механизмы возникновения болезни, и способы балансировки иммунитета в отдельно...
The base fitness крылатское
Общая площадь клуба от Adidas и Reebok – 4000 м 2 . Но тут нет тренажерного зала, а только групповые...
Айрон мэн соревнования что входит
Марафон – прошлый век: сегодня, кого ни спроси, все готовятся к Ironman. Чета Кудеровых (Зожник), президенты банков и даже ваш...
Adblock detector